阅读理解,自主探究:
“一线三垂直”模型是“一线三等角”模型的特殊情况,即三个等角角度为90°,于是有三组边相互垂直.所以称为“一线三垂直模型”.当模型中有一组对应边长相等时,则模型中必定存在全等三角形.

(1)问题解决:如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线DE,AD⊥DE于D,BE⊥DE于E,则CD与BE的数量关系是 CD=BECD=BE;
(2)问题探究:如图2,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线CE,AD⊥CE于D,BE⊥CE于E,AD=2.5cm,DE=1.6cm,求BE的长;
(3)拓展延伸:如图3,在平面直角坐标系中,A(-1.5,0),C(1.5,3.5),△ABC为等腰直角三角形,∠ACB=90°,AC=BC,求B点坐标.
【考点】三角形综合题.
【答案】CD=BE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/3 6:0:2组卷:1027引用:4难度:0.1
相似题
-
1.如图1,平面直角坐标系中,A(a,0),B(0,b),C(-1,-3),AC交y轴于D点,BC交x轴于E点,已知
+(b-2)2=0.a-3
(1)求△ABC的面积和D点坐标;
(2)如图2,M点在x轴上,直线DM交线段AB于N点,若S△BCN=,求M点坐标;178
(3)如图3,G点在线段OA上,H点在线段AB上,∠BGH=α,∠OBG和∠AHG的平分线交于P点,当∠P变化的过程中,始终有为定值,求α的值.∠OAB∠P发布:2025/6/22 9:30:1组卷:228引用:1难度:0.1 -
2.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,BC=8cm,点D是线段AC的中点,动点P从点A出发,沿A-D-B-C向终点C运动,速度为5cm/s,当点P不与点A,B重合时,作PE⊥AB交线段AB于点E,设点P的运动时间为t(s),△APE的面积为S(cm2).
(1)求AB的长;
(2)当点P在线段BD上时,求PE的长(用含t的式子表示);
(3)当P沿A-D-B运动时,求S与t之间的函数关系式;
(4)点E关于直线AP的对称点为E′,当点E′落在△ABC的内部时,直接写出t的取值范围.发布:2025/6/22 8:0:2组卷:337引用:3难度:0.3 -
3.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.
(1)①求证:AC=BD;
②∠APB=;
(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为.发布:2025/6/22 0:30:2组卷:30引用:1难度:0.5