某校高一年级进行安全知识竞赛(满分为100分),所有学生的成绩都不低于75分,从中抽取100名学生的成绩进行分组调研,第一组[75,80),第二组[80,85),…,第五组[95,100](单位:分),得到如图所示的频率分布直方图.
(1)若竞赛成绩不低于85分为优秀,低于85分为非优秀,且成绩优秀的男学生人数为35,成绩非优秀的女学生人数为25,请判断是否有95%的把握认为竞赛成绩的优秀情况与性别有关;
(2)用分层抽样方法在成绩不低于85的学生中抽取6人,再从这6人中随机选3人发言谈体会,设这3人中成绩在[85,90)的人数为ξ,求ξ的分布列与数学期望.
附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.
临界值表:
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【考点】离散型随机变量的均值(数学期望).
【答案】(1)有95%的把握认为竞赛成绩的优秀情况与性别有关;
(2)ξ的分布列为
E(ξ)=0×=.
(2)ξ的分布列为
ξ | 0 | 1 | 2 | 3 |
P | 1 20 |
9 20 |
9 20 |
1 20 |
1
20
+
1
×
9
20
+
2
×
9
20
+
3
×
1
20
3
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:84引用:2难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7