用几个小的长方形、正方形拼成一个大的正方形,然后利用两种不同的方法计算这个大的正方形的面积,可以得到一个等式.例如:计算图1的面积,把图1看作一个大正方形,它的面积是(a+b)2;如果把图1看作是由2个长方形和2个小正方形组成的,它的面积为a2+2ab+b2,由此得到(a+b)2=a2+2ab+b2.
(1)如图2,由几个面积不等的小正方形和几个小长方形拼成一个边长为(a+b+c)的正方形,从中你能发现什么结论?该结论用等式表示为 (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
(2)利用(1)中的结论解决以下问题:已知a+b+c=10,ab+ac+bc=38,求a2+b2+c2的值;
(3)如图3,由正方形ABCD边长为a,正方形CEFG边长为b,点D,G,C在同一直线上,连接BD,DF,若a-b=2,ab=3,求图3中阴影部分的面积.
【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/4 7:30:3组卷:685引用:5难度:0.4