【问题情境】
(1)同学们我们曾经研究过这样的问题:已知正方形ABCD,点E在CD的延长线上,以CE为一边构造正方形CEFG,连接BE和DG,如图1所示,则BE和DG的数量关系为DG=BEDG=BE,位置关系为DG⊥BEDG⊥BE.
【继续探究】
(2)若正方形ABCD的边长为4,点E是AD边上的一个动点,以CE为一边在CE的右侧作正方形CEFG,连接DG、BE,如图2所示,
①请判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;
②连接BG,若AE=1,求线段BG长.爱动脑筋的小丽同学是这样做的:过点G作GH⊥BC,如图3,你能按照她的思路做下去吗?请写出你的求解过程.
【拓展提升】
(3)在(2)的条件下,点E在AD边上运动时,利用图2,则BG+BE的最小值为410410.

10
10
【考点】四边形综合题.
【答案】DG=BE;DG⊥BE;4
10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 0:30:1组卷:1995引用:10难度:0.1
相似题
-
1.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.
(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.发布:2025/6/13 13:0:4组卷:3236引用:5难度:0.1 -
2.阅读材料题:
浙教版九上作业本①第18页有这样一个题目:已知,如图一,P是正方形ABDC内一点,连接PA、PB、PC,若PC=2,PA=4,∠APC=135°,求PB的长.
小明看到题目后,思考了许久,仍没有思路,就去问数学老师,老师给出的提示是:将△PAC绕点A顺时针旋转90°得到△P'AB,再利用勾股定理即可求解本题.请根据数学老师的提示帮小明求出图一中线段PB的长为.
【方法迁移】:已知:如图二,△ABC为正三角形,P为△ABC内部一点,若PC=1,PA=2,PB=,求∠APB的大小.3
【能力拓展】:已知:如图三,等腰三角形ABC中∠ACB=120°,D、E是底边AB上两点且∠DCE=60°,若AD=2,BE=3,求DE的长.发布:2025/6/13 9:0:1组卷:508引用:3难度:0.1 -
3.已知四边形ABCD是正方形,点F为射线AD上一点,连接CF并以CF为对角线作正方形CEFG,连接BE,DG.
(1)如图1,当点F在线段AD上时,求证:BE=DG;
(2)如图1,当点F在线段AD上时,求证:CD-DF=BE;2
(3)如图2,当点F在线段AD的延长线上时,请直接写出线段CD,DF与BE间满足的关系式.发布:2025/6/13 7:0:2组卷:429引用:3难度:0.2