【问题情境】
(1)同学们我们曾经研究过这样的问题:已知正方形ABCD,点E在CD的延长线上,以CE为一边构造正方形CEFG,连接BE和DG,如图1所示,则BE和DG的数量关系为DG=BEDG=BE,位置关系为DG⊥BEDG⊥BE.
【继续探究】
(2)若正方形ABCD的边长为4,点E是AD边上的一个动点,以CE为一边在CE的右侧作正方形CEFG,连接DG、BE,如图2所示,
①请判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;
②连接BG,若AE=1,求线段BG长.爱动脑筋的小丽同学是这样做的:过点G作GH⊥BC,如图3,你能按照她的思路做下去吗?请写出你的求解过程.
【拓展提升】
(3)在(2)的条件下,点E在AD边上运动时,利用图2,则BG+BE的最小值为410410.

10
10
【考点】四边形综合题.
【答案】DG=BE;DG⊥BE;4
10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1941引用:10难度:0.1
相似题
-
1.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.发布:2025/1/28 8:0:2组卷:577引用:1难度:0.2 -
2.如图,在菱形ABCD中,AB=10,sinB=
,点E从点B出发沿折线B-C-D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.35
(1)如图1,点G在AC上.求证:FA=FG.
(2)若EF=FG,当EF过AC中点时,求AG的长.
(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?发布:2025/1/28 8:0:2组卷:2055引用:3难度:0.1 -
3.如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=
,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.55
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.发布:2025/1/28 8:0:2组卷:255引用:1难度:0.1