在新农村建设过程中,渣濑湾村采用“花”元素打造了一座花都村庄.如图,一农户用长为25m的篱笆,一面利用墙,围成有两个小门且中间隔有一道篱笆的长方形花圃.已知小门宽为1m,设花圃的宽AB为x(m),面积为S(m2).
(1)求S关于x的函数表达式.
(2)如果要围成面积为54m2的花圃,AB的长为多少米?
(3)若墙的最大长度为10m,则能围成的花圃的最大面积为多少?并求此时AB的长.
【答案】(1)S=-3x2+27x;
(2)如果要围成面积为54m2的花圃,AB的长为3米或6米;
(3)能围成的花圃的最大面积为m2,此时AB的长为m.
(2)如果要围成面积为54m2的花圃,AB的长为3米或6米;
(3)能围成的花圃的最大面积为
170
3
17
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/25 13:30:1组卷:238引用:1难度:0.4
相似题
-
1.某旅游区的湖边有一个观赏湖中音乐喷泉的区域,该区域沿湖边有一条东西向的长为32m的栏杆.考虑到观景安全和效果,旅游区计划设置一个矩形观众席,该观众席一边靠栏杆,另三边用现有的总长为60m的移动围栏围成,并在观众席内按行、列(东西向为行,南北向为列)摆放单人座椅,要求每个座位占地面积为1m2(如图所示),且观众席内的区域恰好都安排了座位.
(1)若观众席内有x行座椅,用含x的代数式表示每行的座椅数,并求x的最小值;
(2)旅游区库存的500张座椅是否够用?请说明理由.发布:2025/5/25 15:30:2组卷:521引用:4难度:0.6 -
2.某科技公司生产一款精密零件,每个零件的成本为80元,当每个零件售价为200元时,每月可以售出1000个该款零件,若每个零件售价每降低5元,每月可以多售出100个零件,设每个零件售价降低x元,每月的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)为了更好地回馈社会,公司决定每销售1个零件就捐款n(0<n≤6)元作为抗疫基金,当40≤x≤60时,捐款后每月最大的销售利润为135000元,求n的值.发布:2025/5/25 15:30:2组卷:527引用:1难度:0.5 -
3.某网店销售一种产品.这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/件市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示:
(1)当12≤x≤18时,求y与x之间的函数关系式;
(2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式并求出每件销售价为多少元时.每天的销售利润最大?最大利润是多少?发布:2025/5/25 16:0:2组卷:1215引用:9难度:0.6