【模型建立】:(1)如图1,在正方形ABCD中,E,F分别是边BC,CD上的点,且∠EAF=45°,探究图中线段EF,BE,DF之间的数量关系.小明的探究思路如下:延长CB到点G,使BG=DF,连接AG,先证明△ADF≌△ABG,再证明△AEF≌△AEG.
①EF,BE,DF之间的数量关系为 BE+DF=EFBE+DF=EF;
②小亮发现这里△ABG可以由△ADF经过一种图形变换得到,请你写出这种图形变换的过程 将△ADF绕A点顺时针旋转90°将△ADF绕A点顺时针旋转90°,像上面这样有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等的几何模型称为半角模型;
【类比探究】:(2)如图2,在四边形ABCD中,AB=AD,∠ABC与∠D互补,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,试问线段EF,BE,DF之间具有怎样的数量关系?判断并说明理由;
【模型应用】:(3)如图3,在矩形ABCD中,点E在边BC上,AD=6,AB=4,∠CAE=45°,求CE的长.

∠
EAF
=
1
2
∠
BAD
【考点】四边形综合题.
【答案】BE+DF=EF;将△ADF绕A点顺时针旋转90°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/22 1:30:1组卷:817引用:1难度:0.2
相似题
-
1.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.
(1)若∠B=60°,这时点P与点C重合,则∠NMP=度;
(2)求证:NM=NP;
(3)当△NPC为等腰三角形时,求∠B的度数.发布:2025/6/19 1:30:1组卷:2881引用:6难度:0.5 -
2.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:.
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,探求AH满足的数量关系.(可利用(2)得到的结论)发布:2025/6/17 11:30:1组卷:879引用:1难度:0.3 -
3.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.发布:2025/6/18 8:30:2组卷:215引用:3难度:0.1