【阅读】
通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用.
【理解】
(1)如图1,AC⊥BC,CD⊥AB,垂足分别为C、D,E是AB的中点,连接CE.已知AD=a,BD=b(0<a<b).
①分别求线段CE、CD的长(用含a、b的代数式表示);
②比较大小:CE >>CD(填“<”、“=”或“>”),并用含a、b的代数式表示该大小关系.
【应用】
(2)如图2,在平面直角坐标系xOy中,点M、N在反比例函数y=1x(x>0)的图象上,横坐标分别为m、n.设p=m+n,q=1m+1n,记l=14pq.
①当m=1,n=2时,l=9898;当m=3,n=3时,l=11;
②通过归纳猜想,可得l的最小值是 11.请利用图2构造恰当的图形,并说明你的猜想成立.

1
x
1
m
+
1
n
1
4
9
8
9
8
【考点】反比例函数综合题.
【答案】>;;1;1
9
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:3062引用:7难度:0.1
相似题
-
1.已知:如图,梯形ABCD中,AD∥BC,BC⊥y轴于C,AD=1,BC=4,tan∠ABC=
.反比23例函数y=
的图象过顶点A、B.kx
(1)求k的值;
(2)作BH⊥x轴于H,求五边形ABHOD的面积.发布:2025/1/28 8:0:2组卷:69引用:15难度:0.3 -
2.如图,已知直线y=x-2与双曲线y=
(x>0)交于点A(3,m).kx
(1)求m,k的值;
(2)连接OA,在x轴的正半轴上是否存在点Q,使△AOQ是等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.发布:2024/12/23 13:0:2组卷:242引用:19难度:0.5 -
3.如图,矩形ABCD的顶点A、B的坐标分别是A(-2,0)、B(0,-4),反比例函数y=
的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于.kx发布:2024/12/23 12:30:2组卷:892引用:2难度:0.7