某校在课外活动课上连续开展若干项体育游戏,其中一项为“扔沙包”的游戏.其规则是:将沙包扔向指定区域内,该区域共分为A,B,C三个部分.如果扔进A部分一次,或者扔进B部分两次,或者扔进C部分三次,即视为该项游戏过关,并进入下一项游戏.小杨每次都能将沙包扔进这块区域内,若他扔进A部分的概率为p,扔进B部分的概率是扔进A部分的概率的两倍,且每一次扔沙包相互独立.
(1)若小杨第二次扔完沙包后,游戏过关的概率为14,求p;
(2)设小杨第二次扔完沙包后,游戏过关的概率为P1;设小杨第四次扔完沙包后,恰好游戏过关的概率为P2,试比较P1,P2的大小.
1
4
【考点】相互独立事件和相互独立事件的概率乘法公式.
【答案】(1);
(2)当0<p<时,P1<P2;
当p=时,P1=P2;
当时,P1>P2.
1
6
(2)当0<p<
1
6
当p=
1
6
当
1
6
<
p
<
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:208引用:5难度:0.7
相似题
-
1.甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局,且每局甲获胜的概率和乙获胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( )12发布:2024/12/29 12:0:2组卷:255引用:6难度:0.6 -
2.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为
;若他第1球投不进,则第2球投进的概率为23.若他第1球投进概率为13,他第2球投进的概率为( )23发布:2024/12/29 12:0:2组卷:314引用:5难度:0.7 -
3.某市在市民中发起了无偿献血活动,假设每个献血者到达采血站是随机的,并且每个献血者到达采血站和其他的献血者到达采血站是相互独立的.在所有人中,通常45%的人的血型是O型,如果一天内有10位献血者到达采血站献血,用随机模拟的方法来估计一下,这10位献血者中至少有4位的血型是O型的概率.
发布:2024/12/29 11:0:2组卷:1引用:1难度:0.7