如图,△ABC中,∠ACB=90°,AC=BC,点D,E,分别在CA,BC的延长线且AD=CE,过点C作CF⊥DE,垂足为F,FC的延长线交AB的延长线于点G.
(1)求证:∠BCG=∠CDE;
(2)①在图中找出与CG相等的线段,并证明;
②探究线段AG、BG、DE之间的数量关系(直接写出);
(3)若AG=kBG,求DFEF的值(用含k的代数式表示).
DF
EF
【考点】四边形综合题.
【答案】(1)证明见解析过程;
(2)①DE=CG,理由见解析过程;②AG2+BG2=2DE2,理由见解析过程;
(3)k2.
(2)①DE=CG,理由见解析过程;②AG2+BG2=2DE2,理由见解析过程;
(3)k2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 14:30:1组卷:510引用:2难度:0.3
相似题
-
1.如图,四边形ABCD、EBGF都是正方形.
(1)如图1,若AB=4,EC=,求FC的长;17
(2)如图2,正方形EBGF绕点B逆时针旋转,使点G正好落在EC上,猜想AE、EB、EC之间的数量关系,并证明你的结论;
(3)如图3,在(2)条件下,∠BCE=22.5°,EC=2,点M为直线BC上一动点,连接EM,过点M作MN⊥EC,垂足为点N,直接写出EM+MN的最小值.发布:2025/5/24 19:0:1组卷:233引用:2难度:0.5 -
2.如图1,在菱形ABCD中,AB=10,∠BAD=α(0°<α<180°),连接AC,点Q是AD上的一点,连接BQ交AC于点E,过点E作EG⊥AD于点G,连接DE.
(1)当α=60°且时,DQAQ=12=,DG=;DEEQ
(2)当时,若S菱形ABCD=50时.求DG的长度;DQAQ=1
(3)当时,如图2,分别以点E,A为圆心,大于DQAQ=1为半径画弧.交于点F和H,作直线FH,分别交AB,AC,AD于点P,N,M,请你判断点M的位置是否变化?若不变,求AM的长;若变化说明理由.12AE发布:2025/5/24 19:0:1组卷:88引用:4难度:0.3 -
3.如图,在正方形ABCD中,AB=6,E为AB的中点,连结CE,作CF⊥EC交射线AD于点F,过点F作FG∥CE交射线CD于点G,连结EG交AD于点H.
(1)求证:CE=CF.
(2)求HD的长.
(3)如图2,连结CH,点P为CE的中点,Q为AF上一动点,连结PQ,当∠QPC与四边形GHCF中的一个内角相等时,求所有满足条件的DQ的长.发布:2025/5/24 18:0:1组卷:789引用:2难度:0.1