随着“新冠”疫情得到有效控制,企业进入了复工复产阶段.为了支持一家小微企业发展,某科创公司研发了一种玩具供其生产销售.根据测算,该企业每月生产x套玩具的成本p由两部分费用(单位:元)构成:①固定成本(与生产玩具套数x无关),总计2万元; ②生产所需成本5x+1200x2.
(1)问:该企业每月生产多少套玩具时,可使得平均每套所需的成本费用最少?此时每套玩具的成本费用是多少?
(2)因“疫情”防控的需要,要求企业的复工复产逐步进行.假设复工后,企业每月生产x套,售价定为30+x100(单位:元),且每月生产出的玩具能全部售出.如果企业的月产量与复工率成正比,且该企业复工率达100%时的月产量为4000套,问:该企业的复工率至少达到多少时,才能确保月利润不少于10万元?
1
200
x
2
x
100
【考点】根据实际问题选择函数类型.
【答案】(1)每月生产2000套玩具时费用最少,且每套玩具的最低费用为25元;
(2)复工率不低于75%时,月利润不少于10万元.
(2)复工率不低于75%时,月利润不少于10万元.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:70引用:3难度:0.7
相似题
-
1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设某放射性同位素的衰变过程中,其含量P(单位:贝克)与时间t(单位:天)满足函数关系P(t)=
,其中P0为t=0时该放射性同位素的含量.已知t=15时,该放射性同位素的瞬时变化率为P02-t30,则该放射性同位素含量为4.5贝克时,衰变所需时间为( )-32ln210发布:2024/12/29 13:30:1组卷:156引用:11难度:0.7 -
2.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为福清人喜爱的交通工具.据预测,福清某新能源汽车4S店从2023年1月份起的前x个月,顾客对比亚迪汽车的总需量R(x)(单位:辆)与x的关系会近似地满足
(其中x∈N*且x≤6),该款汽车第x月的进货单价W(x)(单位:元)与x的近似关系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x个月的总需量R(x),求出第x月的需求量g(x)(单位:辆)与x的函数关系式;
(2)该款汽车每辆的售价为185000元,若不计其他费用,则这个汽车4S店在2023年的第几个月的月利润f(x)最大,最大月利润为多少元?发布:2024/12/29 11:30:2组卷:24引用:3难度:0.5 -
3.某工厂生产某种零件的固定成本为20000元,每生产一个零件要增加投入100元,已知总收入Q(单位:元)关于产量x(单位:个)满足函数:Q=
.400x-12x2,0≤x≤40080000,x>400
(1)将利润P(单位:元)表示为产量x的函数;(总收入=总成本+利润)
(2)当产量为何值时,零件的单位利润最大?最大单位利润是多少元?(单位利润=利润÷产量)发布:2024/12/29 13:0:1组卷:234引用:11难度:0.5