抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B,C的坐标分别为(4,0)和(0,4),抛物线的对称轴为直线x=1,直线AD交抛物线于点D(2,m).
(1)求抛物线和直线AD的解析式;
(2)如图Ⅰ,点Q是线段AB上一动点,过点Q作QE∥AD,交BD于点E,连接DQ,求△QED面积的最大值;
(3)如图Ⅱ,直线AD交y轴于点F,点M,N分别是抛物线对称轴和抛物线上的点,若以C,F,M,N为顶点的四边形是平行四边形,求点M的坐标.

【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:643引用:5难度:0.5
相似题
-
1.已知抛物线y=x2+tx-t-1(t>0)过点(h,-4),交x轴于A,B两点(点A在点B左侧),交y轴于点C,且对于任意实数m,恒有m2+tm-t-1≥-4成立.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上,是否存在点M,使得∠BMC=∠BAC,若存在,求出点M的坐标,若不存在,请说明理由;
(3)若P1(n-2,y1),P2(n,y2),P3(n+2,y3)三点都在抛物线上且总有y3>y1>y2,请直接写出n的取值范围.发布:2025/5/23 14:30:1组卷:453引用:3难度:0.3 -
2.如图,抛物线y=ax2-8ax+12a(a<0)与x轴交于A,B两点(点A在点B的左侧),抛物线上另有一点C在第一象限,满足∠ACB为直角,且使∠OCA=∠OBC.
(1)求线段OC的长;
(2)求该抛物线的函数关系式;
(3)在抛物线的对称轴上是否存在一点P,使得△BCP是以BC为腰的等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.发布:2025/5/23 15:0:2组卷:500引用:1难度:0.2 -
3.已知抛物线y=ax2+bx+c(a≠0)的顶点D及与y轴的交点C都在直线y=x+1上,对称轴是直线x=1.
(1)求抛物线的解析式;
(2)若在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值;
(3)设m为抛物线与x轴一个交点的横坐标,求的值.m8+m4-20m2+6m3+14m+6发布:2025/5/23 15:0:2组卷:431引用:1难度:0.4