某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
【考点】二次函数的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:8428引用:110难度:0.3
相似题
-
1.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素,在一个限速40km/h乙内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了,事后现场测量甲车的刹车距离为12m,乙车的刹车距离超过10m,但小于20m,查有关资料知,甲种车的刹车距离S甲(m)与车速x(km/h)之间有下列关系,S甲=0.1x+0.01x2,乙种车的刹车距离S乙(m)与车速x(km/h)的关系如图表示,请你就两车的速度方面分析相碰的原因.
发布:2025/6/18 23:0:1组卷:46引用:3难度:0.3 -
2.为了考查冰川的熔化状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km的圆形考查区域,线段P1P2是冰川的部分边界线(不考虑其它边界),当冰川熔化时,边界线沿着与其垂直的方向朝考查区域平行移动,若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是s=
n2-320n+950.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别为(-4,9)、(-13、-3).725
(1)求线段P1P2所在直线对应的函数关系式;
(2)求冰川边界线移动到考查区域所需的最短时间.发布:2025/6/18 19:30:1组卷:717引用:54难度:0.3 -
3.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.
(1)求出y与x的函数关系式.
(2)当销售单价为多少元时,月销售额为14000元;
(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].(-b2a,4ac-b24a)发布:2025/6/18 19:30:1组卷:2230引用:58难度:0.1