【感知】如图1所示,在四边形AEFC中,EB、FD分别是边AE、CF的延长线,我们把∠BEF、∠DFE称为四边形AEFC的外角,若∠A+∠C=220°,则∠BEF+∠DFE=220°220°;
【探究】如图2所示,在四边形AECF中,EB、FD分别是边AE、AF的延长线,我们把∠BEC、∠DFC称为四边形AECF的外角,试探究∠A、∠C与∠BEC、∠DFC之间的数量关系,并说明理由;
【应用】如图3所示,FM、EM分别是四边形AEFC的外角∠DFE、∠BEF的平分线,若∠A+∠C=200°,则∠M的度数为 80°80°.

【考点】多边形内角与外角.
【答案】220°;80°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/5 8:0:9组卷:221引用:3难度:0.5