【方法学习】数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.
小林在组内经过合作交流,得到了如下的解决方法(如图2),
①延长AD到M,使得DM=AD;
②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;
③利用三角形的三边关系可得AM的取值范围为AB-BM<AM<AB+BM,从而得到AD的取值范围是 1<AD<71<AD<7;
方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.
【初步运用】如图3,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,若BE=6,CF=4,求线段EF的取值范围.
【深入思考】如图4,在△ABC中,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,试判断线段AD与EF的关系,并加以证明.

【考点】三角形综合题.
【答案】1<AD<7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:782引用:1难度:0.1
相似题
-
1.在等腰直角△ABC中,∠ACB=90°,AC=BC,△ABC外有一点D满足AD⊥BD,BD与AC相交于点E,连接CD.
(1)如图1,若AE=2,∠EBC=2∠ABE,求AB的长;
(2)如图2,点F为BD上一点,连接CF,点G为CF的中点,连接DG,若AC=2DG,猜想BF与CD存在的数量关系,并证明你的猜想;
(3)如图3,在(2)问条件下,当F为BD的中点时,将△AEB沿直线AB翻折至△ABC所在平面内,得△AE′B,连接GE'、DE',AG,请直接写出的比值.S△E′DGS△ADG发布:2025/6/10 10:0:2组卷:300引用:2难度:0.1 -
2.如图,在Rt△ABC中,BC=AC,∠ACB=90°,点D是线段AB上一点,把线段CD绕C点逆时针旋转90°到CE,连接AE、BE,BE交AC于点F,交CD于点G.
(1)如图1,求证:AE=BD;
(2)如图2,若CG=BG,求证:FG=DG+EF;
(3)如图3,以点C为坐标原点,建立平面直角坐标系,若AC=4,点D为BC的垂直平分线与AB的交点,在x轴上是否存在点M,使得△BDM为等腰三角形,若存在,请直接写出M的坐标,若不存在,请说明理由.发布:2025/6/10 10:30:1组卷:389引用:2难度:0.2 -
3.如图,在△ABC中,AB=AC.
(1)如图1,在△ABC内取点D,连接AD,BD,将AD绕点A逆时针旋转至AE,∠BAC=∠DAE,连接BE,CE,∠BCE=120°,若BE=2BD=4,求BC的长;
(2)如图2,点D为BC中点,点E在CA的延长线上,连接ED交AB于点F,EF=FD,连接EB并延长至点G,连接GD,若∠BGD=60°,BF=GD,求证:GD=BG+DF;
(3)如图3,∠ABC=60°,点D在BC的延长线上,连接AD,在AD上取点E,AE=2DE,连接BE,CE,若BD=12,当CE取最小值时,直接写出△BED的面积.发布:2025/6/10 11:30:1组卷:474引用:4难度:0.2