甲、乙、丙、丁四人分别按下列的要求作一个解为x1,x2的一元二次方程x2+px+q=0.
甲:p,q,x1,x2都取被3除余1的整数;
乙:p,q,x1,x2都取被3除余2的整数;
丙:p,q取被3除余1的整数,x1,x2取被3除余2的整数;
丁:p,q取被3除余2的整数,x1,x2取被3除余1的整数;
问:甲、乙、丙、丁是否能按上述要求各自作出方程?若可以作出,请你写出一个这样的方程,若不能作出,请你说明理由.
【考点】带余除法.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:65引用:1难度:0.1
相关试卷