试卷征集
加入会员
操作视频

年少的岁月里,约定是令人欣喜的!我们不妨约定:关于原点对称的一对点(不重合)称为一对“双子星”,图象至少经过一对“双子星”的函数称为“双子星函数”.
(1)若
A
5
4
-
2
s
,-
4
和B(-1,t2-2t+1)是一对“双子星”,则s=
-
1
2
-
1
2
,t=
3或-1
3或-1

(2)已知关于x的函数y=x2-3x-1和y=kx+p(其中k,p为常数)
①求出“双子星函数”y=x2-3x-1图象上所有的“双子星”;
②关于x的函数y=kx+p的图象是否存在“双子星”,如果有,指出共有多少对“双子星”,如果没有,请说明理由;
(3)已知“双子星函数”y=ax2+bx+c(其中a,b,c为常数,a≠0)的图象经过不同的两点P(4-m,n)和Q(m,n),(其中m,n为常数)并且满足以下2个条件:①a+b+c=1;②当a≤x≤a+1时,该函数的最小值为4a+1,求二次项系数a的值.

【考点】二次函数综合题
【答案】-
1
2
;3或-1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/13 8:0:9组卷:532引用:2难度:0.2
相似题
  • 1.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
    (1)直接填写:a=
    ,b=
    ,顶点C的坐标为

    (2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.

    发布:2025/6/17 23:30:2组卷:163引用:1难度:0.4
  • 2.如图,在平面直角坐标系中,有抛物线y=ax2+bx+3,已知OA=OC=3OB,动点P在过A、B、C三点的抛物线上.
    (1)求抛物线的解析式;
    (2)求过A、B、C三点的圆的半径;
    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;
    (4)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

    发布:2025/6/18 12:30:1组卷:410引用:2难度:0.3
  • 3.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.
    (1)求抛物线的解析式;
    (2)求点P在运动的过程中线段PD长度的最大值;
    (3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.

    发布:2025/6/18 0:30:4组卷:1978引用:7难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正