已知Sn为数列{an}的前n项和,且Sn=n(n+1)2,数列{bn}前n项和为Tn,且b1=2,bn+1=Tn+2.
(1)求{an}和{bn}的通项公式;
(2)设cn=(-1)na2n,数列{cn}的前n项和为Pn,求P2n;
(3)证明:n∑i=2a2i+1(a2i-1)bi+1<12.
S
n
=
n
(
n
+
1
)
2
c
n
=
(
-
1
)
n
a
2
n
n
∑
i
=
2
a
2
i
+
1
(
a
2
i
-
1
)
b
i
+
1
<
1
2
【答案】(1)an=n,bn=2n.
(2)2n2+n.
(3)见证明过程.
(2)2n2+n.
(3)见证明过程.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:504引用:5难度:0.4
相似题
-
1.十九世纪下半叶集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段(
,13),记为第一次操作;再将剩下的两个区[0,23],[13,1]分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于23,则需要操作的次数n的最小值为( )(参考数据:lg2=0.3010,lg3=0.4771)910发布:2024/12/29 13:30:1组卷:143引用:17难度:0.6 -
2.定义
为n个正数p1,p2,…,pn的“均倒数”.若已知数列{an}的前n项的“均倒数”np1+p2+…+pn,又bn=13n+1,则an+26+1b1b2+…+1b2b3=( )1b9b10发布:2024/12/29 11:30:2组卷:118引用:1难度:0.7 -
3.设数列{an}的前n项和是Sn,令
,称Tn为数列a1,a2,…,an的“超越数”,已知数列a1,a2,…,a504的“超越数”为2020,则数列5,a1,a2,…,a504的“超越数”为( )Tn=S1+S2+⋯+Snn发布:2024/12/29 9:0:1组卷:127引用:3难度:0.5