若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数
f(x)为“L函数”.
(1)试判断函数h(x)=x2是否是“L函数”,并说明理由;
(2)若函数g(x)=3x-1+a(3-x-1)为“L函数”,求实数a的取值范围;
(3)若函数f(x)为“L函数”,且f(1)=1,
求证:对任意x∈(2k-1,2k)(k∈N*),都有f(x)>x2.
f
(
x
)
>
x
2
【考点】函数恒成立问题.
【答案】(1)是,理由见解析;(2)[-1,1];(3)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:51引用:2难度:0.4
相似题
-
1.对于任意x1,x2∈(2,+∞),当x1<x2时,恒有
成立,则实数a的取值范围是alnx2x1-2(x2-x1)<0发布:2024/12/29 7:30:2组卷:64引用:3难度:0.6 -
2.把符号
称为二阶行列式,规定它的运算法则为aamp;bcamp;d.已知函数aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函数,若对∀x∈[-1,1],∀θ∈R,都有g(x)-1≥f(θ)恒成立,求实数λ的取值范围.g(x)=x2amp;-11amp;1x2+1发布:2024/12/29 10:30:1组卷:14引用:6难度:0.5 -
3.设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是.
发布:2024/12/29 5:0:1组卷:547引用:37难度:0.5