问题背景:
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG:再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是 EF=BE+DFEF=BE+DF.
拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明:若不成立,请说明理由.

1
2
【答案】EF=BE+DF
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/10 8:0:8组卷:187引用:1难度:0.5
相似题
-
1.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,EF交AD于点G.请找出图中所有的全等三角形,并将它们用“≌”符号表示出来.
发布:2025/1/24 8:0:2组卷:31引用:1难度:0.1 -
2.如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且DE=CB.
求证:△CED≌△ABC.发布:2025/1/28 8:0:2组卷:965引用:5难度:0.6 -
3.如图,已知AB=AC,AE=AD,点B,D,E,C在同一条直线上,要利用“SSS”推理得出△ABE≌△ACD,还需要添加的一个条件可以是( )
发布:2024/12/23 13:30:1组卷:235引用:6难度:0.7