设椭圆C:x2a2+y2b2=l(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),点A是C上第一象限内一点,直线AF2与C另一交点为B,当△ABF1的面积为22c2时,△ABF1内切圆半径为b4.
(1)求C的离心率;
(2)点A′,A关于原点O对称,点A在x轴上的射影为D,直线A′D与C的另一交点为E,直线AE交x轴于点G,证明:|AD|2=|OD|•|DG|.
x
2
a
2
+
y
2
b
2
2
2
b
4
【答案】(1);
(2)证明见解析.
2
2
(2)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:23引用:1难度:0.6
相似题
-
1.已知椭圆C:
=1(a>b>0)的一个顶点坐标为A(0,-1),离心率为x2a2+y2b2.32
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x-1)(k≠0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.发布:2024/12/29 12:30:1组卷:372引用:4难度:0.5 -
2.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4583引用:26难度:0.3 -
3.如果椭圆
的弦被点(4,2)平分,则这条弦所在的直线方程是( )x236+y29=1发布:2024/12/18 3:30:1组卷:460引用:3难度:0.6