如图,已知二次函数y=ax2+bx+3的图象与x轴交于点A(-1,0)、B(4,0),与y的正半轴交于点C.

(1)求二次函数y=ax2+bx+3的表达式.
(2)点Q(m,0)是线段OB上一点,过点Q作y轴的平行线,与BC交于点M,与抛物线交于点N,连接CN,探究:是否存在点Q,使得MN=MC?若存在,请求出点Q的坐标;若不存在,请说明理由.
(3)若点E在二次函数图象上,且以E为圆心的圆与直线BC相切于点F,且EF=65,请求出点E的坐标.
6
5
【考点】二次函数综合题.
【答案】(1)y=-x2+x+3;
(2)存在点Q(,0),理由见解析;
(3)(2-,)或(2+,-)或(2-,3+)或(2+,3-).
3
4
9
4
(2)存在点Q(
7
3
(3)(2-
6
3
6
4
6
3
6
4
2
3
2
4
2
3
2
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:628引用:4难度:0.2
相似题
-
1.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.
(1)求这个二次函数的解析式;
(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;
(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N的坐标,使得以点P,M,N为顶点的三角形与△ACP全等?若存在,请求出点M,N的坐标;若不存在,请说明理由.发布:2025/6/17 11:30:1组卷:129引用:1难度:0.4 -
2.如图,直线y1=-x+3与x轴于交于点B,与y轴交于点C.抛物线y2=-x2+bx+c经过B、C两点,并与x轴另一个交点为A.
(1)求抛物线y2的解析式;
(2)若点M在抛物线上,且S△MOC=4S△AOC,求点M的坐标;
(3)设点P是线段BC上一动点,过P作PQ⊥x轴,交抛物线于点Q,求线段PQ长度的最大值.发布:2025/6/17 2:0:1组卷:1010引用:3难度:0.3 -
3.如图,已知抛物线y=ax2+bx+c过点A(6,0),B(-2,0),C(0,-3).
(1)求此抛物线的解析式;
(2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
(3)若点Q在x轴上,点G为该抛物线的顶点,且∠QGA=45°,求点Q的坐标.发布:2025/6/16 23:0:1组卷:401引用:5难度:0.5