如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准直角三角形”.
(1)关于“准直角三角形”,下列说法:
①在△ABC中,若∠A=100°,∠B=70°,∠C=10°,则△ABC是准直角三角形;
②若△ABC是“准直角三角形”,∠C>90°,∠A=60°,则∠B=20°;
③“准直角三角形”一定是钝角三角形.
其中,正确的是 ①③①③.(填写所有正确结论的序号)
(2)如图①,在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线.
求证:△ABD是“准直角三角形”.
(3)如图②,B、C为直线l上两点,点A在直线l外,且∠ABC=50°.若P是l上一点,且△ABP是“准直角三角形”,请直接写出∠APB的度数.

【考点】三角形综合题.
【答案】①③
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/7 8:0:9组卷:181引用:1难度:0.1
相似题
-
1.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.
(1)直接写出c及x的取值范围;
(2)若x是大于14的偶数.
①求c的长;
②判断△ABC的形状.发布:2025/6/16 22:30:4组卷:117引用:2难度:0.4 -
2.在△ABC中,∠ACB=2∠B.
(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证:CD=DE=;AC+CD=;(请直接写出结论,不用证明.)
(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,模仿题(1)的思路,求证:AB=AC+CD;
(3)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.发布:2025/6/16 18:30:2组卷:191引用:1难度:0.4 -
3.如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
【思考】如果点P,Q分别从点A,B同时出发,经过几秒,△PBQ的面积等于8cm2?
【探究】如果点P,Q分别从点A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能,说明理由.
【拓展】若点P沿射线AB方向从点A出发,以1cm/s的速度移动,点Q沿射线CB方向从点C出发,以2cm/s的速度移动,点P,Q同时出发,则经过几秒,△PBQ的面积为1cm2?发布:2025/6/16 21:0:1组卷:233引用:1难度:0.3