如图,在平面直角坐标系中,直线y=-x+3与抛物线y=-x2+bx+c交于A、B两点,点A在x轴上,点B在y轴上.点P是抛物线上任意一点,过点P作PQ⊥y轴,交直线AB于点Q,连接BP,设点P的横坐标为m,△PQB的边PQ与PQ边上的高之差为d.
(1)求此抛物线解析式.
(2)求点Q的横坐标(用含m的代数式表示);
(3)∠BQP为锐角.
①求d关于m的函数关系式;
②当△AOB的顶点到PQ的最短距离等于d时,直接写出m的值.

【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/3 21:0:1组卷:205引用:3难度:0.1
相似题
-
1.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a=,b=,顶点C的坐标为;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.发布:2025/6/17 23:30:2组卷:163引用:1难度:0.4 -
2.如图,抛物线y=
(x+2)(x-8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )14发布:2025/6/17 18:30:1组卷:2558引用:19难度:0.7 -
3.如图,抛物线y=ax2-3ax+b与直线AB交于A(-2,
)、B(4,0)两点,点C是此抛物线上的一个动点,过点C作CD⊥x轴,交直线AB于点D.32
(1)求此抛物线的解析式;
(2)如图①,当点C在直线AB下方的抛物线上运动时,请求出线段CD长度的最大值;
(3)如图②,以D为圆心,CD的长为半径作⊙D.当⊙D与x轴相切时,请直接写出点C的横坐标.发布:2025/6/17 22:30:1组卷:63引用:1难度:0.2