如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.
(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;
(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;
(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.

【考点】四边形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/8 8:0:10组卷:3340引用:9难度:0.2
相似题
-
1.连接四边形不相邻两个顶点的线段叫做四边形的对角线,如图1,四边形ABCD中线段AC、线段BD就是四边形ABCD的对角线.把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系.
猜想结论:(要求用文字语言叙述) .
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.发布:2025/6/17 6:30:2组卷:304引用:2难度:0.5 -
2.感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连接ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.
探究:如图②,点E在射线CA上(不与点A、C重合),连接ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF
应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为.发布:2025/6/17 8:0:1组卷:250引用:5难度:0.3 -
3.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A,点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF.连接BP、BH.(友情提醒:正方形的四条边都相等.即AB=BC=CD=DA;四个内角都是90°;即∠A=∠B=∠C=∠D=90°)
(1)求证:∠APB=∠BPH.
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.
(3)设AP为x,求出的BE长.(用含x的代数式表示)发布:2025/6/17 6:0:2组卷:456引用:3难度:0.3