如图,已知AD⊥BC,垂足为点D,EF⊥BC,垂足为点F,∠1+∠2=180°.请填写∠CGD=∠CAB的理由.
∵AD⊥BC,EF⊥BC,
∴∠ADC=90°,∠EFC=90° ( 垂直定义垂直定义),
∴∠ADC=∠EFC,
∴AD∥EFEF( 同位角相等,两直线平行同位角相等,两直线平行),
∴∠33+∠2=180°( 两直线平行,同旁内角互补两直线平行,同旁内角互补),
∵∠1+∠2=180°,
∴∠11=∠33( 同角的补角相等同角的补角相等),
∴DG∥ABAB( 内错角相等,两直线平行内错角相等,两直线平行),
∴∠CGD=∠CAB.
【考点】平行线的判定与性质.
【答案】垂直定义;EF;同位角相等,两直线平行;3;两直线平行,同旁内角互补;1;3;同角的补角相等;AB;内错角相等,两直线平行
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/8 20:0:1组卷:863引用:12难度:0.5
相似题
-
1.如图,若直线AB∥CD,AE,CF分别是∠MAB和∠MCD的角平分线,求证:AE∥CF.
证明:∵AB∥CD(已知)
∴∠MAB=( ).
∵AE,CF分别是∠MAB和∠MCD的角平分线(已知),
∴=,12∠MAB(角平分线的定义).∠MCF=12
∴∠MAE=(等量代换).
∴AE∥CF ( ).发布:2025/6/8 20:30:2组卷:160引用:2难度:0.8 -
2.如图1,直线MN与直线AB,CD分别交于点E,F,∠BEM与∠DFN互为补角.
(1)请判断直线AB与CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线EP与FP交于点P,延长EP与CD交于点G,过点G作GH⊥EG垂足为G,求证:PF∥HG;
(3)在(2)的条件下,连接PH,点K是GH上一点,连接PK,使∠PHK=∠HPK,作∠EPK的平分线PQ交MN于点Q,请画出图形.并直接写出∠HPQ的度数.发布:2025/6/8 23:30:1组卷:339引用:2难度:0.5 -
3.如图所示,已知∠1+∠2=180°,∠B=∠3,求证:∠ACB=∠AED.
发布:2025/6/9 0:0:2组卷:999引用:14难度:0.3