已知a∈R,函数f(x)=ax+lnx,g(x)=ax-lnx-2.
(1)当f(x)与g(x)都存在极小值,且极小值之和为0时,求实数a的值;
(2)若f(x1)=f(x2)=2(x1≠x2),求证:1x1+1x2>2a.
f
(
x
)
=
a
x
+
lnx
1
x
1
+
1
x
2
>
2
a
【考点】利用导数研究函数的极值;利用导数研究函数的最值.
【答案】【答案】(1)1;(2)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:535引用:16难度:0.2
相似题
-
1.已知函数f(x)=(x-a)lnx(a∈R),它的导函数为f'(x).
(1)当a=1时,求f'(x)的零点;
(2)若函数f(x)存在极小值点,求a的取值范围.发布:2024/12/29 13:0:1组卷:279引用:8难度:0.4 -
2.若函数
有两个极值点,则实数a的取值范围为( )f(x)=e2x4-axex发布:2024/12/29 13:30:1组卷:123引用:4难度:0.5 -
3.定义:设f'(x)是f(x)的导函数,f″(x)是函数f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心,已知函数
的对称中心为(1,1),则下列说法中正确的有( )f(x)=ax3+bx2+53(ab≠0)发布:2024/12/29 13:30:1组卷:181引用:7难度:0.5