如图,广场上有一盏路灯距离地面10米,记灯杆的底部为A.把路灯看作一个点光源,身高1.5米的女孩站在离A点5米的点B处,回答下面的问题:
(Ⅰ)设女孩站在B处看路灯的仰角为θ,则与θ最接近的角度为 CC.
A、30° B、45° C、60° D、75°
(Ⅱ)若女孩以A为圆心、以5m为半径绕着灯杆走一圈,则人影扫过的图形是什么?求这个图形的面积;(结果保留1位小数)
(Ⅲ)以点B为原点,直线AB为x轴(点A在x轴的正半轴上),过点B且与AB垂直的直线为y轴建立平面直角坐标系.设女孩绕灯杆行走的轨迹为M,且M上任意一点P(x,y)均满足|PA|-|AB|=x,记点A关于点B的对称点为点C,若直线PC与曲线M相切,求|PA|的长.
【考点】直线与圆锥曲线的综合.
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:138引用:2难度:0.4
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:97引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7