设椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点F1,F2分别是双曲线x24-y2=1的左右顶点,且椭圆的右顶点到双曲线的渐近线的距离为2105.
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A、B,且OA⊥OB?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在,说明理由.
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
x
2
4
-
y
2
2
10
5
OA
⊥
OB
【答案】(1)=1;
(2)x2+y2=;[,2].
x
2
8
+
y
2
4
(2)x2+y2=
8
3
4
6
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:142引用:4难度:0.4
相似题
-
1.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4510引用:26难度:0.3 -
2.已知椭圆C:
=1(a>b>0)的一个顶点坐标为A(0,-1),离心率为x2a2+y2b2.32
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x-1)(k≠0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.发布:2024/12/29 12:30:1组卷:370引用:4难度:0.5 -
3.如果椭圆
的弦被点(4,2)平分,则这条弦所在的直线方程是( )x236+y29=1发布:2024/12/18 3:30:1组卷:456引用:3难度:0.6