观察下列等式:11×2=1-12,12×3=12-13,13×4=13-14,将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.
(1)猜想并写出:1n(n+1)=1n-1n+11n-1n+1.
(2)直接写出下列各式的计算结果:11×2+12×3+13×4+…+12006×2007=2006200720062007;
(3)探究并计算:12×4+14×6+16×8+…+12006×2008.
1
1
×
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
1
×
2
+
1
2
×
3
+
1
3
×
4
=
1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
1
-
1
4
=
3
4
1
n
(
n
+
1
)
1
n
1
n
+
1
1
n
1
n
+
1
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
…
+
1
2006
×
2007
2006
2007
2006
2007
1
2
×
4
+
1
4
×
6
+
1
6
×
8
+
…
+
1
2006
×
2008
【考点】规律型:数字的变化类.
【答案】-;
1
n
1
n
+
1
2006
2007
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/14 12:0:1组卷:727引用:16难度:0.5
相似题
-
1.在一列数1,2,3,4,…,1 000中,数字“0”出现的次数是
发布:2025/6/15 2:30:1组卷:14引用:2难度:0.7 -
2.求1+2+22+23+…+210的值,可令S=1+2+22+23+…+210,则2S=2+22+23+24+…+211,因此2S-S=211-1.仿照以上推理,计算出1+3+32+33+…+310的值为 .
发布:2025/6/14 18:30:4组卷:251引用:3难度:0.7 -
3.求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+…+22016+22017,因此2S-S=22017-1,S=22017-1.参照以上推理,计算4+42+43+…+42020+42021的值为( )
发布:2025/6/14 21:30:2组卷:206引用:1难度:0.6