给定无穷数列{an},若无穷数列{bn}满足:对任意n∈N*,都有|bn-an|≤1,则称{bn}与{an}“接近”.
(1)设{an}是首项为1,公比为12的等比数列,bn=an+1+1,n∈N*,判断数列{bn}是否与{an}接近,并说明理由;
(2)设数列{an}的前四项为:a1=1,a2=2,a3=4,a4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;
(3)已知{an}是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b2-b1,b3-b2,…,b201-b200中至少有100个为正数,求d的取值范围.
1
2
【考点】等差数列与等比数列的综合.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1662引用:4难度:0.1
相似题
-
1.在数列{an}中,a1=5,an=qan-1+d(n≥2)
(1)数列{an}有可能是等差数列或等比数列吗?若可能给出一个成立的条件(不必证明);若不可能,请说明理由;
(2)若q=2,d=3,是否存在常数x,使得数列{an+x}为等比数列;
(3)在(2)的条件下,设数列{an}的前n项和为Sn,求满足Sn≥2009的最小自然数n的值.发布:2025/1/14 8:0:1组卷:8引用:1难度:0.5 -
2.已知{an}是等差数列,公差d≠0,a1=1,且、a1,a3,a9成等比数列,则数列
的前n项和Sn=.{2an}发布:2024/12/29 7:0:1组卷:72引用:3难度:0.7 -
3.在各项均为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(Ⅰ) 求等比数列{an}的通项公式;
(Ⅱ) 若数列{bn}满足bn=11-2log2an,求数列{bn}的前n项和Tn的最大值.发布:2024/12/29 5:30:3组卷:307引用:13难度:0.5