如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2-8ax+8交x轴于A,B两点,交y轴于点C,且OC=2OA.
(1)求抛物线的解析式;
(2)连接AC,点D是线段AC上的一个动点,过点D作DE⊥x轴于点E.在线段OB上截取BF=DE,过点F作FG⊥x轴,交抛物线于点G,设点D的横坐标为t,点G的纵坐标为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点H是AD的中点,连接EH,FH,CG,过点C作CK∥EH,交线段FH于点K,连接GK,若FK=CD,求tan∠CGK的值.

【考点】二次函数综合题.
【答案】(1);
(2)d=-t2+;
(3).
y
=
-
1
6
x
2
+
4
3
x
+
8
(2)d=-
2
3
32
3
(3)
18
11
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:155引用:2难度:0.1
相似题
-
1.如图,已知抛物线
与x轴交于点A(-4,0),B(1,0),与y轴交于点C.y=ax2-32x+c
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点Q使QB+QC最小?若存在,请求出Q点坐标;若不存在,请说明理由;
(3)点P为AC上方抛物线上的动点,过点P作PD⊥AC,垂足为点D,连接PC,当△PCD与△ACO相似时,求点P的坐标.发布:2025/5/22 14:30:2组卷:573引用:5难度:0.3 -
2.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A(-1,0),B两点(点A在点B左侧),与y轴交于点C(0,-3),点P为x轴下方抛物线上一点.
(1)求抛物线的解析式;
(2)如图,当点P的横坐标为2时,D为直线AP上一点,△OBD的周长为7是否成立,若成立,请求出D点坐标,若不成立,请说明理由;
(3)若直线AP与y轴交于点M,直线BM与抛物线交于点Q,连接PQ与y轴交于点H,求的值.PHQH发布:2025/5/22 14:30:2组卷:522引用:2难度:0.4 -
3.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB.
(1)求点C的坐标和此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,EF⊥BC于点F,是否存在点E,使线段EF的长度最大.若存在,请求出点E的坐标;若不存在,请说明理由;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,请F直接写出点P的坐标.发布:2025/5/22 14:30:2组卷:236引用:3难度:0.1