设A(x1,y1),B(x2,y2)是函数f(x)=12+log2x1-x图象上任意两点,且OM=12(OA+OB),已知点M的横坐标为12.
(1)求点M的纵坐标;
(2)若Sn=f(1n)+f(2n)+…+f(n-1n),其中n∈N*且n≥2,
①求Sn;
②已知an=23,n=1 1(Sn+1)(Sn+1+1),n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.
1
2
+
log
2
x
1
-
x
OM
=
1
2
(
OA
+
OB
)
1
2
S
n
=
f
(
1
n
)
+
f
(
2
n
)
+
…
+
f
(
n
-
1
n
)
2 3 , n = 1 |
1 ( S n + 1 ) ( S n + 1 + 1 ) , n ≥ 2 |
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:83引用:5难度:0.1
相似题
-
1.已知点A
是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求数列{an}与{bn}的通项公式.
(2)若数列的前n项和为Tn,问满足Tn{1bnbn+1}的最小整数是多少?>10002011
(3)若,求数列Cn的前n项和Pn.Cn=-2bnan发布:2025/1/12 8:0:1组卷:36引用:3难度:0.1 -
2.已知一组2n(n∈N*)个数据:a1,a2,…,a2n,满足:a1≤a2≤…≤a2n,平均值为M,中位数为N,方差为s2,则( )
发布:2024/12/29 7:30:2组卷:54引用:4难度:0.5 -
3.已知公比为q的正项等比数列{an},其首项a1>1,前n项和为Sn,前n项积为Tn,且函数f(x)=x(x+a1)(x+a2)⋯(x+a9)在点(0,0)处切线斜率为1,则( )
发布:2024/12/29 10:30:1组卷:35引用:3难度:0.5