如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
(1)求抛物线的解析式及点G的坐标;
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.
【答案】(1)y=-x2+2x+3,(1,4);(2)-21≤yQ≤-5或-21≤yQ≤4.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:2642引用:26难度:0.5
相似题
-
1.如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.发布:2024/12/23 18:0:1组卷:1917引用:37难度:0.3 -
2.已知抛物线y=ax2+bx+3经过点A(3,0)和点B(4,3).
(1)求这条抛物线所对应的二次函数的关系式;
(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值).发布:2024/11/22 18:0:2组卷:1369引用:7难度:0.9 -
3.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,-4),则这个二次函数的解析式为( )
发布:2024/12/14 19:30:1组卷:4725引用:10难度:0.9