我们把两条中线互相垂直的三角形称为“中垂三角形”、例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.

【特例探索】:
(1)①如图1,当∠ABE=45°,c=42时,a=4545,b=4545;
②如图2,当∠ABE=30°,c=2时,求a和b的值.
【归纳证明】:
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
(3)利用(2)中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图4所示,求MG2+MH2的值.
2
5
5
5
5
【考点】四边形综合题.
【答案】4;4
5
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:388引用:5难度:0.2
相似题
-
1.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P沿边AB从点A向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设点P、Q移动的时间为t s.问:
(1)当t为何值时△PBQ的面积等于8cm2?
(2)当t为何值时△DPQ是直角三角形?
(3)是否存在t的值,使△DPQ的面积最小,若存在,求此时t的值及此时的面积;若不存在,请说明理由.发布:2025/6/23 18:0:2组卷:117引用:1难度:0.1 -
2.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.
(1)请判断:AF与BE的数量关系是
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.发布:2025/6/23 16:0:1组卷:3585引用:23难度:0.5 -
3.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P. ①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.1DM+1DN发布:2025/6/23 21:30:2组卷:421引用:6难度:0.5