如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:∠CFE=∠CEF请在以下的解题过程中的括号里填推理的理由.
证明:∵AE平分∠CAB(已知),
∴∠CAE=∠FAB( 角平分线的定义角平分线的定义),
∵∠ACE=90°(已知),
∴∠CAE+∠CEF=90°( 直角三角形的两锐角互余直角三角形的两锐角互余),
∵CD是△ABC的高(已知),
∴∠FDA=90°(三角形高的定义),
∴∠FAB+∠AFD=90°(直角三角形的两锐角互余),
∴∠CEF=∠AFD( 等角的余角相等等角的余角相等),
∵∠CFE=∠AFD( 对顶角相等对顶角相等),
∴∠CFE=∠CEF( 等量代换等量代换).
【考点】直角三角形的性质.
【答案】角平分线的定义;直角三角形的两锐角互余;等角的余角相等;对顶角相等;等量代换
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/9 14:30:1组卷:476引用:3难度:0.7