已知双曲线C:x2a2-y2b2=1(a>0,b>0)与双曲线C1:x216-y24=1的渐近线相同,且经过点(4,3).
(1)求双曲线C的方程;
(2)过点M(1,1)的直线l与双曲线C的右支交于A,B两点,与x轴交于点N.设MA=λAN,MB=μBN(λ,μ∈R),求λμ+μλ的取值范围.
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
x
2
16
-
y
2
4
(
4
,
3
)
MA
=
λ
AN
MB
=
μ
BN
λ
μ
+
μ
λ
【考点】双曲线与平面向量.
【答案】(1)-y2=1.
(2)(-∞,-)∪(2,+∞).
x
2
4
(2)(-∞,-
74
35
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:184引用:1难度:0.3
相似题
-
1.双曲线Γ:
的一条渐近线与圆:x2+y2=16交于第一象限的一点M,记双曲线Γ的右焦点为F,左顶点为A,则x24-y212=1的值为( )MA•MF发布:2024/12/18 4:30:1组卷:72引用:4难度:0.7 -
2.F1、F2是双曲线
的左、右焦点,点M为双曲线E右支上一点,点N在x轴上,满足∠F1MN=∠F2MN=60°,若E:x2a2-y2b2=1(a,b>0),则双曲线E的离心率为( )3MF1+5MF2=λMN(λ∈R)发布:2024/12/20 13:30:1组卷:261引用:4难度:0.5 -
3.已知双曲线
的左、右焦点分别是F1,F2,双曲线C上有两点A,B满足C:x2a2-y2b2=1(a>0,b>0),且OA+OB=0,若四边形F1AF2B的周长l与面积S满足∠F1AF2=2π3,则双曲线C的离心率为( )3l2=80S发布:2024/12/10 1:0:1组卷:176引用:5难度:0.5