根据前面已经学过的“距离”我们知道:点到直线的“距离”是直线外一点和直线上各点连接的所有线段中最短的线段(即垂线段)的长度.类似的我们给出两个图形G1、G2的“距离”定义:如果点P为图形G1上的任意一点,点Q为图形G2上的任意一点,且P、Q两点的“距离”有最小值,那么称这个最小值为图形G1,G2的“距离”,记为d(G1,G2).特别地,当图形G1,G2有公共点时,图形G1,G2的“距离”d(G1,G2)=0.
(1)如图1,在平面直角坐标系中,菱形OABC的∠AOC=60°,点B、C在第一象限,若A(5,0),D(-3,0),E(0,4),则d(D,菱形OABC)=33,d(E,菱形OABC)=22;
(2)如图2,已知△ABC的三个顶点的坐标分别为A(0,2),B(-2,0),C(2,0),将一次函数y=kx+6的图象记为L.
①若d(L,△ABC)=0,求k的取值范围;
②若k>0,且d(L,△ABC)=23,则k的值为 3333;
(3)在平面直角坐标系中,点O为坐标原点,点P(4n,6-3n)为平面内一点,其中n∈R,则d(O,P)=245245.

3
3
3
3
3
24
5
24
5
【考点】一次函数综合题.
【答案】3;2;;
3
3
24
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:380引用:2难度:0.1
相似题
-
1.如图,一次函数
的函数图象与x轴、y轴分别交于点A、B,以线段AB为y=-3x+3直角边在第一象限内作Rt△ABC,且使∠ABC=30°.
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;32
(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.发布:2025/6/17 4:0:1组卷:1813引用:8难度:0.1 -
2.直线l:m(2x-y-5)+(3x-8y-14)=0被以A(1,0)为圆心,2为半径的⊙A所截得的最短弦的长为( )
发布:2025/6/16 22:0:2组卷:201引用:2难度:0.9 -
3.如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
发布:2025/6/16 22:30:4组卷:6202引用:112难度:0.7