根据前面已经学过的“距离”我们知道:点到直线的“距离”是直线外一点和直线上各点连接的所有线段中最短的线段(即垂线段)的长度.类似的我们给出两个图形G1、G2的“距离”定义:如果点P为图形G1上的任意一点,点Q为图形G2上的任意一点,且P、Q两点的“距离”有最小值,那么称这个最小值为图形G1,G2的“距离”,记为d(G1,G2).特别地,当图形G1,G2有公共点时,图形G1,G2的“距离”d(G1,G2)=0.
(1)如图1,在平面直角坐标系中,菱形OABC的∠AOC=60°,点B、C在第一象限,若A(5,0),D(-3,0),E(0,4),则d(D,菱形OABC)=33,d(E,菱形OABC)=22;
(2)如图2,已知△ABC的三个顶点的坐标分别为A(0,2),B(-2,0),C(2,0),将一次函数y=kx+6的图象记为L.
①若d(L,△ABC)=0,求k的取值范围;
②若k>0,且d(L,△ABC)=23,则k的值为 3333;
(3)在平面直角坐标系中,点O为坐标原点,点P(4n,6-3n)为平面内一点,其中n∈R,则d(O,P)=245245.

3
3
3
3
3
24
5
24
5
【考点】一次函数综合题.
【答案】3;2;;
3
3
24
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:366引用:2难度:0.1
相似题
-
1.如图,平面直角坐标系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直线
过A点,且与y轴交于D点.y=-12x+2
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2024/12/23 19:30:2组卷:1226引用:3难度:0.4 -
2.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.52发布:2024/12/23 17:30:9组卷:4639引用:6难度:0.3 -
3.如图,在梯形ABCD中,AD∥BC,AB=CD,以边BC所在直线为x轴,边BC的中点O为原点建立直角坐标平面,已知点B的坐标为(-4,0),直线AB的解析式为y=2x+m.
(1)求m的值;
(2)求直线CD的解析式;
(3)若点A在第二象限,是否存在梯形ABCD,它的面积为30?若存在,请求出点A的坐标;若不存在,请说明理由.发布:2025/1/21 8:0:1组卷:5引用:0难度:0.3