试卷征集
加入会员
操作视频

近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势.一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染、空气污染、土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值.化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).

参考数据:
10
i
=
1
x
i
y
i
10
i
=
1
x
i
10
i
=
1
y
i
10
i
=
1
x
2
i
10
i
=
1
t
i
z
i
10
i
=
1
t
i
10
i
=
1
z
i
10
i
=
1
t
2
i
650 91.5 52.5 1478.6 30.5 15 15 46.5
表中ti=lnxi,zi=lnyi(i=1,2,⋯,10).
(1)根据散点图判断,y=a+bx与y=cxd,哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;
(3)经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N(0.54,0.022).那么这种化肥的有效率超过56%的概率约为多少?
附:①对于一组数据(ui,vi)(i=1,2,3,⋯,n),其回归直线
̂
v
=
̂
β
u
+
̂
α
的斜率和截距的最小二乘估计分别为
̂
β
=
n
i
=
1
u
i
v
i
-
n
uv
n
i
=
1
u
2
i
-
n
u
2
̂
α
=
v
-
̂
β
u

②若随机变量Z~N(μ,σ2),则有P(μ-σ<Z<μ+σ)≈0.6826,P(μ-2σ<Z<μ+2σ)≈0.9544;
③取e≈2.7.

【答案】(1)y=cxd更适宜作为粮食产量y关于化肥施用量x的回归方程类型;
(2)化肥施用量为27公斤时,粮食亩产量y的值为8.1百公斤;
(3)这种化肥的有效率超过56%的概率约为0.1587.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:221引用:2难度:0.6
相似题
  • 1.某科研机构为了了解气温对蘑菇产量的影响,随机抽取了某蘑菇种植大棚12月份中5天的日产量y(单位:kg)与该地当日的平均气温x(单位:℃)的数据,得到如图散点图:
    其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
    (1)求出y关于x的线性回归方程;
    (2)若该地12月份某天的平均气温为6℃,用(1)中所求的回归方程预测该蘑菇种植大棚当日的产量.
    附:线性回归直线方程
    ̂
    y
    =
    ̂
    b
    x
    +
    ̂
    a
    中,
    ̂
    b
    =
    n
    i
    =
    1
    x
    i
    y
    i
    -
    n
    x
    y
    n
    i
    =
    1
    x
    2
    i
    -
    n
    x
    2
    ̂
    a
    =
    y
    -
    ̂
    b
    x

    发布:2024/12/29 11:30:2组卷:104引用:3难度:0.7
  • 2.两个线性相关变量x与y的统计数据如表:
    x 9 9.5 10 10.5 11
    y 11 10 8 6 5
    其回归直线方程是
    ̂
    y
    =
    ̂
    b
    x+40,则相应于点(9,11)的残差为

    发布:2024/12/29 12:0:2组卷:115引用:8难度:0.7
  • 3.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:
    (1)请画出发芽数y与温差x的散点图;
    (2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
    (3)①求出发芽数y与温差x之间的回归方程
    ̂
    y
    =
    ̂
    a
    +
    ̂
    b
    x
    (系数精确到0.01);
    ②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.
    参考数据:
    6
    i
    =
    1
    x
    i
    =
    75
    6
    i
    =
    1
    y
    i
    =
    162
    6
    i
    =
    1
    x
    i
    y
    i
    =2051,
    6
    i
    =
    1
    x
    i
    2
    -
    6
    x
    2
    ≈4.2,
    6
    i
    =
    1
    y
    i
    2
    -
    6
    y
    2
    ≈6.5.
    参考公式:
    相关系数:r=
    n
    i
    =
    1
    x
    i
    y
    i
    -
    n
    x
    y
    n
    i
    =
    1
    x
    i
    2
    -
    n
    x
    2
    n
    i
    =
    1
    y
    i
    2
    -
    n
    y
    2
    (当|r|>0.75时,具有较强的相关关系).
    回归方程
    ̂
    y
    =
    ̂
    a
    +
    ̂
    b
    x
    中斜率和截距计算公式:
    ̂
    b
    =
    n
    i
    =
    1
    x
    i
    y
    i
    -
    n
    x
    y
    n
    i
    =
    1
    x
    i
    2
    -
    n
    x
    2
    ̂
    a
    =
    y
    -
    ̂
    b
    x

    发布:2024/12/29 12:0:2组卷:182引用:5难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正