伴随经济的飞速发展,中国全民健身赛事活动日益丰富,公共服务体系日趋完善.据相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.健身之于个人是一种自然而然的习惯,之于国家与民族,则是全民健康的基础柱石之一,某市一健身连锁机构对去年的参与了该连锁机构健身的会员进行了统计,制作成如下两个统计图,图1为该健身连锁机构会员年龄等级分布图,图2为一个月内会员到健身连锁机构频数分布扇形图.

若将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类,将一月内来健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.
(1)现从该健身连锁机构会员中随机抽取一个容量为100人的样本,根据如图的数据,补全下方2×2列联表,并判断依据小概率值α=0.05的独立性检验,能否认为是否为“健身达人”与年龄有关;
5
6
类别 | 年轻人 | 非年轻人 | 合计 |
健身达人 | |||
健身爱好者 | |||
合计 | 100 |
ρ(K2<k0) | 0.40 | 0.25 | 0.05 | 0.005 |
k0 | 0.708 | 1.323 | 3.841 | 7.879 |
K 2 = n ( ad - bc ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d ) |
(2)将(1)中的频率作为概率,连锁机构随机选取会员进行回访,抽取3人回访.
①若选到的3人中2人为“年轻人”,1人为“非年轻人”,再从这3人中随机选取的1人,了解到该会员是“健身达人”,求该人为非年轻人的概率;
②设3人中既是“年轻人”又是“健身达人”的人数为随机变量X,求X的分布列和期望值.
【考点】离散型随机变量的均值(数学期望);独立性检验.
【答案】(1)列联表答案见解析,不能认为“健身达人”与年龄有关;
(2)①;
②故X的分布列:
数学期望:.
(2)①
2
7
②故X的分布列:
X | 0 | 1 | 2 | 3 |
P | 1 8 |
3 8 |
3 8 |
1 8 |
3
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:42引用:2难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:201引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7