已知函数f(x)=e12x(e为自然对数的底数).
(Ⅰ)令g(x)=a|x|-|f(x)-1f(x)|,若不等式g(x)≤0恒成立,求实数a的取值范围;
(Ⅱ)令φ(x)=xf3(x)-m,若函数φ(x)有两不同零点x1,x2(x1<x2).
(ⅰ)求实数m的取值范围;
(ⅱ)证明:ex2-ex1<2m+1.
f
(
x
)
=
e
1
2
x
g
(
x
)
=
a
|
x
|
-
|
f
(
x
)
-
1
f
(
x
)
|
e
x
2
-
e
x
1
<
2
m
+
1
【考点】利用导数研究函数的最值.
【答案】(Ⅰ)(-∞,1];(Ⅱ)(i);(ii)证明过程见解答.
m
∈
(
-
2
3
e
,
0
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:174引用:1难度:0.2
相似题
-
1.已知函数
,若关于x的不等式f(x)=ln2+x2-x+1对任意x∈(0,2)恒成立,则实数k的取值范围( )f(kex)+f(-12x)>2发布:2025/1/5 18:30:5组卷:297引用:2难度:0.4 -
2.已知函数f(x)=ax3+x2+bx(a,b∈R)的图象在x=-1处的切线斜率为-1,且x=-2时,y=f(x)有极值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.发布:2024/12/29 12:30:1组卷:48引用:4难度:0.5 -
3.已知函数f(x)=
.ex-ax21+x
(1)若a=0,讨论f(x)的单调性.
(2)若f(x)有三个极值点x1,x2,x3.
①求a的取值范围;
②求证:x1+x2+x3>-2.发布:2024/12/29 13:0:1组卷:187引用:2难度:0.1