试卷征集
加入会员
操作视频

数学问题:各边长都是整数,最大边长为21的三角形有多少个?
为解决上面的数学问题,我们先研究下面的数学模型:
数学模型:在1到21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有多少种不同的取法?
为了找到解决问题的方法,我们把上面数学模型简单化.
(1)在1~4这4个自然数中,每次取两个不同的数,使得所取的两个数之和大于4,有多少种不同的取法?
根据题意,有下列取法:1+42+3,2+43+2,3+44+1,4+2,4+3;而1+4与4+1,2+3与3+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1
+
2
+
2
+
3
2
=4=
4
2
4
种不同的取法.
(2)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种不同的取法?
根据题意,有下列取法: 1+52+4,2+53+4,3+54+2,4+3,4+55+1,5+2,5+3,5+4,而1+5与5+1,2+4与4+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1
+
2
+
2
+
3
+
4
2
=6=
5
2
-
1
4
种不同的取法.
(3)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
根据题意,有下列取法:1+62+5,2+63+4,3+5,3+64+3,4+5,4+65+2,5+3,5+4,5+66+1,6+2,6+3,6+4,6+5;而1+6与6+1,2+5与5+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1
+
2
+
3
+
3
+
4
+
5
2
=9=
6
2
4
种不同的取法.
(4)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,有多少种不同的取法?
根据题意,有下列取法:1+72+6,2+73+5,3+6,3+74+5,4+6,4+75+3,5+4,5+6,5+76+2,6+3,6+4,6+5,6+77+1,7+2,7+3,7+4,7+5,7+6;而1+7与7+1,2+6与6+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1
+
2
+
3
+
3
+
4
+
5
+
6
2
=12=
7
2
-
1
4
种不同的取法…
问题解决:
依照上述研究问题的方法,解决上述数学模型和提出的问题
(1)在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有
110
110
种不同的取法;(只填结果)
(2)在1~n(n为偶数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,有
n
2
4
n
2
4
种不同的取法;(只填最简算式)
(3)在1~n(n为奇数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,有
n
2
-
1
4
n
2
-
1
4
种不同的取法;(只填最简算式)
(4)各边长都是整数,最大边长为21的三角形有多少个?(写出最简算式和结果,不写分析过程)
问题拓展:
(5)在1~100这100个自然数中,每次取两个不同的数,使得所取的两个数之和大于100,有
2500
2500
种不同的取法;(只填结果)
(6)各边长都是整数,最大边长为11的三角形有多少个?(写出最简算式和结果,不写分析过程)
(7)各边长都是整数,最大边长为31的三角形有多少个?(写出最简算式和结果,不写分析过程)

【考点】三角形边角关系
【答案】110;
n
2
4
n
2
-
1
4
;2500
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/25 17:30:1组卷:423引用:2难度:0.1
相似题
  • 1.已知△ABC中,∠B是锐角.从顶点A向BC边或其延长线作垂线,垂足为D;从顶点C向AB边或其延长线作垂线,垂足为E.当
    2
    BD
    BC
    2
    BE
    AB
    均为正整数时,△ABC是什么三角形?并证明你的结论.

    发布:2024/6/27 10:35:59组卷:209引用:3难度:0.5
  • 2.已知△ABC的三条高的比是3:4:5,且三条边的长均为整数,则△ABC的边长可能是(  )

    发布:2024/6/27 10:35:59组卷:668引用:2难度:0.5
  • 3.如图所示,六边形ABCDEF中,AB=BC=CD=DE=EF=FA,并且∠A+∠C+∠E=∠B+∠D+∠F,求证:∠A=∠D,∠B=∠E,∠C=∠F.

    发布:2024/6/27 10:35:59组卷:208引用:1难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正