试卷征集
加入会员
操作视频

小明在研究直角三角形的边长时,发现了下面的式子:
①当三边长分别为3、4、5时,32+42=52;②当三边长分别为6、8、10时,62+82=102;③当三边长分别为5、12、13时,52+122=132; …
(1)从中小明发现了一个规律:在直角△ABC中,若∠B=90°,则它的三边长满足
AB2+BC2=AC2
AB2+BC2=AC2

(2)已知长方形ABCD中AB=8,BC=5,E是AB的中点,点F在BC上,△DEF的面积为16,求点D到直线EF的距离.

【答案】AB2+BC2=AC2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:205引用:1难度:0.3
相似题
  • 1.如图是一个“赵爽弦图”,它是由四个全等的直角三角形围成一个大正方形,中空的部分也是一个小正方形,若大正方形的边长为7,小正方形的边长为3,直角三角形的两直角边分别为a,b,则ab的值为

    发布:2025/6/7 11:0:1组卷:255引用:5难度:0.7
  • 2.综合与实践:
    问题情境
    学过几何的人都知道勾股定理,它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有400多种.在学习了《勾股定理》和《实数》后,某班同学以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动.
    操作发现
    如图1是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,他们借助此图求出了△ABC的面积.

    (1)在图1中,所画出的△ABC的三边长分别是AB=
    ,BC=
    ,AC=
    ;△ABC的面积为

    实践探究
    (2)在图2所示的正方形网格中画出△DEF(顶点都在格点上),使DE=
    5
    ,DF=
    13
    ,EF=
    20
    ,并写出△DEF的面积.
    继续探究
    (3)若△ABC中有两边的长分别为
    2
    a,
    10
    a(a>0),且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上

    发布:2025/6/7 8:0:1组卷:1062引用:7难度:0.4
  • 3.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1所示).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若EF=4,则S1+S2+S3的值是(  )

    发布:2025/6/7 4:0:1组卷:837引用:8难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正