如图,抛物线y=-49x2+89x+329与x轴交于A,B两点(点A在点B的左侧),顶点为D.点P为对称轴右侧抛物线上的一个动点,其横坐标为m,直线AD交y轴于点C,过点P作PF∥AD交x轴于点F,PE∥x轴,交直线AD于点E,交直线DF于点M.

(1)直接写出点A,B,D的坐标;
(2)当DM=3MF时,求m的值;
(3)试探究点P在运动过程中,是否存在m,使四边形AFPE是菱形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
y
=
-
4
9
x
2
+
8
9
x
+
32
9
【考点】二次函数综合题.
【答案】(1)A(-2,0)、B(4,0)、D(1,4);
(2)m=1+或m=1+;
(3)(,)或(,-21).
(2)m=1+
3
2
3
3
2
6
(3)(
23
8
39
16
17
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:216引用:6难度:0.1
相似题
-
1.如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于C(0,3),DE所在的直线是该抛物线的对称轴.
(1)求抛物线的解析式及顶点D的坐标;
(2)连接AD,P是AD上的动点,P′是点P关于DE的对称点,连接PE,过点P′作P′F∥PE,交x轴于点F,设四边形PP′FE的面积为y,EF=x,求y与x之间的函数关系式.发布:2025/6/16 2:0:1组卷:231引用:2难度:0.3 -
2.如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=-2的距离总相等.
①证明上述结论并求出点F的坐标;
②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.
证明:当直线l绕点F旋转时,+1MF是定值,并求出该定值;1NF
(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.发布:2025/6/16 5:0:1组卷:2172引用:5难度:0.4 -
3.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
(3)在抛物线对称轴上是否存在一点M,使以A,N,M为顶点的三角形是直角三角形?若存在,请直接写出点M的坐标.若不存在,请说明理由.发布:2025/6/16 1:30:1组卷:2079引用:7难度:0.5