试卷征集
加入会员
操作视频

【问题探究】如图1,在正方形ABCD中,点E、F分别在边DC、BC上,且AE⊥DF,求证:AE=DF.
【知识迁移】如图2,在矩形ABCD中,AB=3,BC=4,点E在边AD上,点M、N分别在边AB、CD上,且BE⊥MN,求
BE
MN
的值.
【拓展应用】如图3,在平行四边形ABCD中,AB=m,BC=n,点E、F分别在边AD、BC上,点M、N分别在边AB、CD上,当∠EFC与∠MNC的度数之间满足什么数量关系时,有
EF
MN
=
m
n
试写出其数量关系,并说明理由.

【考点】相似形综合题
【答案】【问题探究】见解析;
【知识迁移】
3
4

【拓展应用】当∠EFC=∠MNC时,或当∠EFC+∠MNC=180°时,
EF
MN
=
m
n
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 12:30:2组卷:746引用:1难度:0.4
相似题
  • 1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.
    (1)若四边形ABCD为正方形.
    ①如图1,请直接写出AE与DF的数量关系

    ②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;
    (2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.

    发布:2025/5/24 6:30:2组卷:1835引用:5难度:0.5
  • 2.如图,矩形ABCD中AB=10,AD=6,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为G,延长EG交直线DC于点F,再把△BEH沿EH翻折,使点B的对应点T落在EF上,折痕EH交直线BC于点H.
    (1)求证:△GDE∽△TEH;
    (2)若点G落在矩形ABCD的对称轴上,求AE的长;
    (3)是否存在点T落在DC边上?若存在,求出此时AE的长度,若不存在,请说明理由.

    发布:2025/5/24 4:30:1组卷:599引用:3难度:0.3
  • 3.在△ABC中,AB=AC,P是BC边上一点,PD∥AB,交AC于点D.
    (1)如图1,连接PA,若∠APD=∠B.
    ①求证:AB2=PA•BC;
    ②过点D作DF⊥PA于F,求
    PF
    PC
    的值;
    (2)如图2,过P作PG∥AC,交AB于点G,点Q为△ABC外一点,且P,Q关于直线DG对称,连接QA,QC,求证:∠B+∠Q=180°.

    发布:2025/5/24 7:0:1组卷:93引用:2难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正