在平面直角坐标系中,A(a,0)为x轴上一点,B(0,b)为y轴上的一点,且a,b满足(a-3)2+|b-4|=0,∠BAO的平分线交y轴于点 C.
(1)求A,B两点的坐标;
(2)如图1所示,M为线段BO上的一个动点,过M点作AB的垂线交x轴于点E,D为垂足,∠OME的平分线交直线AC于点N,当点M运动时,∠ANM的度数是否改变?若不变,请你求出∠ANM的度数;若改变,请说明理由;
(3)如图2所示,若过点M作AB的平行线交x轴于点E,∠OME的平分线交直线AC于点N,当点M运动时,∠ANM的度数是否改变?若不变,请求出∠ANM的度数,若改变,请说明理由.

【考点】三角形综合题.
【答案】(1)A(3,0),B(0,4);
(2)不变,∠ANM=90°;
(3)不变,∠ANM=135°.
(2)不变,∠ANM=90°;
(3)不变,∠ANM=135°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:21引用:3难度:0.3
相似题
-
1.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;
(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=度;
(3)设∠BAC=α,∠BCE=β
①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,请直接写出α,β之间的数量关系,不用证明.发布:2025/6/9 13:0:1组卷:632引用:7难度:0.3 -
2.感知发现:(1)在学习平行线中,兴趣小组发现了很多有趣的模型图,如图1,当AB∥CD时,可以得到结论:∠BED=∠B+∠D.在学习逆命题时,发现原命题是真命题,逆命题不一定是真命题,于是兴趣小组想尝试证明:如图1,∠BED=∠B+∠D,求证:AB∥CD.请写出证明过程.
利用这个“模型结论”,我们可以解决很多问题:
综合与实践,(2)在综合与实践课上,同学们以“一个含30°角的直角三角尺和两条平行线”为背景开展数学活动,如图2.已知两直线a,b且a∥b和直角三角形ABC,∠BCA=90°,∠BAC=30°,∠ABC=60°.创新小组的同学发现∠2-∠1=120°,说明理由.
实践探究:(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC平分∠BAM,此时发现∠1与∠2又存在新的数量关系,请直接写出答案.发布:2025/6/9 11:30:1组卷:317引用:1难度:0.2 -
3.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,MB.
(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数:
(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=32°,求∠MGN+∠MPN的度数;
(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.发布:2025/6/9 11:30:1组卷:164引用:1难度:0.3