某片果园有果树100棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系为:y=-12x+80.
(1)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实8250千克?
(2)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
1
2
【考点】二次函数的应用.
【答案】(1)增种果树10棵时,果园可以收获果实8250千克.
(2)增种果树30棵时,果园的总产量w(千克)最大,最大产量是8450千克.
(2)增种果树30棵时,果园的总产量w(千克)最大,最大产量是8450千克.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/11 19:30:1组卷:576引用:5难度:0.6
相似题
-
1.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?发布:2025/6/13 22:30:1组卷:2928引用:34难度:0.1 -
2.某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销售,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天多售出4箱.
(1)如果要使每天销售饮料获利14000元,则每箱应该降价多少元?
(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应该降价多少?若不能,请说明理由.
(3)要使每天销售饮料获利最大,每箱应该降价多少元?最大获利是多少?发布:2025/6/13 22:30:1组卷:385引用:3难度:0.7 -
3.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围.
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?发布:2025/6/13 23:0:1组卷:2462引用:91难度:0.5