某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立.根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为0.5,0.6,0.4.第二次选拔,甲、乙、丙三人合格的概率依次为0.6,0.5,0.5.
(1)求第一次选拔后甲、乙两人中只有甲合格的概率;
(2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率;
(3)求甲、乙、丙经过前后两次选拔后,恰有一人合格的概率.
【考点】相互独立事件和相互独立事件的概率乘法公式.
【答案】(1)0.2.
(2)0.3,0.3,0.2.
(3).
(2)0.3,0.3,0.2.
(3)
217
500
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:49引用:8难度:0.5
相似题
-
1.小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为
;若他第1球投不进,则第2球投进的概率为23.若他第1球投进概率为13,他第2球投进的概率为( )23发布:2024/12/29 12:0:2组卷:317引用:5难度:0.7 -
2.甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局,且每局甲获胜的概率和乙获胜的概率均为
.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( )12发布:2024/12/29 12:0:2组卷:255引用:6难度:0.6 -
3.某市在市民中发起了无偿献血活动,假设每个献血者到达采血站是随机的,并且每个献血者到达采血站和其他的献血者到达采血站是相互独立的.在所有人中,通常45%的人的血型是O型,如果一天内有10位献血者到达采血站献血,用随机模拟的方法来估计一下,这10位献血者中至少有4位的血型是O型的概率.
发布:2024/12/29 11:0:2组卷:3引用:1难度:0.7