已知O为坐标原点,A,B分别在y轴、x轴正半轴上,D是x轴正半轴上一动点,AD=DE,∠ADE=α,矩形AOBC的周长为24且AC=2BC.

(1)如图1,当α=90°时.直线CE交x轴于点F,求证:F为OB中点;
(2)如图2,当α=60°时,若D是OB中点,求E点坐标;
(3)如图3,当α=120°时,Q是AE的中点,求D点运动过程中BQ的最小值.
【考点】四边形综合题.
【答案】(1)证明见解析;
(2)E点坐标为;
(3)4.
(2)E点坐标为
(
2
+
2
3
,
2
+
2
3
)
(3)4.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/4 20:0:1组卷:164引用:2难度:0.3
相似题
-
1.在四边形ABCD中,∠A=∠B=90°,E为AB边上的点.
(1)连接CE,DE,CE⊥DE;
①如图1,若AE=BC,求证:AD=BE;
②如图2,若AE=BE,求证:CE平分∠BCD;
(2)如图3,F是∠BCD的平分线CE上的点,连接BF,DF,若BC=4,CD=6,,求CF的长.BF=DF=362发布:2025/6/7 22:30:2组卷:95引用:2难度:0.1 -
2.如图,点D为△ABC的边BC的中点,过点A作AE∥BC.且AE=
BC,连接DE,CE.12
(1)求证:AD=EC;
(2)若AB=AC,判断四边形ADCE的形状,并说明理由;
(3)若要使四边形ADCE为正方形.则△ABC应满足什么条件?
(直接写出条件即可,不必证明)发布:2025/6/7 21:0:1组卷:166引用:6难度:0.3 -
3.阅读与应用:同学们:你们已经知道(a-b)2≥0,即a2-2ab+b2≥0.
∴a2+b2≥2ab(当且仅当a=b时取等号).
阅读1:若a,b为实数,且a>0,b>0,∵(-a)2≥0,∴a-2b+b≥0.ab
∴a+b≥2(当且仅当a=b时取等号).ab
阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:mx
x+≥2mx即x+x•mx≥2mx,m
∴当x=,即x2=m,∴x=mx(m>0)时,函数y=x+m的最小值为2mx.m
阅读理解上述内容,解答下列问题:
问题1:若函数y=a-1+(a>1),则a=时,函数y=a-1+16a-1(a>1)的最小值为 ;16a-1
问题2:已知一个矩形的面积为9cm,求此矩形周长的最小值;
问题3:求代数式(m>-1)的最小值.m2+2m+10m+1发布:2025/6/7 23:30:2组卷:59引用:1难度:0.2