如图,设△ABC中角A,B,C所对的边分别为a,b,c,AD为BC边上的中线,已知c=1且2csinAcosB=asinA-bsinB+14bsinC,cos∠BAD=217.
(1)求b边的长度;
(2)求△ABC的面积;
(3)设点E,F分别为边AB,AC上的动点,线段EF交AD于G,且△AEF的面积为△ABC面积的一半,求AG•EF的最小值.
1
4
21
7
AG
•
EF
【考点】正弦定理;平面向量数量积的性质及其运算.
【答案】(1)b=4;(2)△ABC的面积为;(3)的最小值是2.
3
AG
•
EF
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1041引用:10难度:0.3
相似题
-
1.如图,在△ABC中,
,D是BC边上一点,且AB=36,∠B=π4.∠ADB=π3
(1)求AD的长;
(2)若CD=10,求AC的长及△ACD的面积.发布:2025/1/24 8:0:2组卷:324引用:7难度:0.5 -
2.在华罗庚著的《数学小丛书》中,由一个定理的推导过程,得出一个重要的正弦函数的不等式
≤sinsinα1+sinα2+…+sinαnn,若四边形ABCD的四个内角为A,B,C,D,则α1+α2+…+αnn的最大值为( )sinA+sinB+sinC+sinD4发布:2025/1/5 18:30:5组卷:71引用:1难度:0.7 -
3.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的( )
发布:2025/1/5 18:30:5组卷:190引用:11难度:0.7