【问题提出】
(1)如图①,在平行四边形ABCD中,对角线AC、BD相交于点O,若S△ABC=3,则△ABD的面积为 33;
【问题探究】
(2)如图②,已知BC=6,点A为BC上方的一个动点,且∠BAC=120°,点D为BA延长线上一点,且AD=AC,连接CD,求△BCD面积的最大值;
【问题解决】
(3)如图③,四边形ABCD是规划中的休闲广场示意图,AC、BD为两条人行通道,根据规划要求,人行通道AC的长为500米,∠DBC=30°,AD∥BC,为了容纳更多的人,要求该休闲广场的面积尽可能大,请问休闲广场ABCD的面积是否存在最大值,如果存在,求出四边形ABCD的最大面积,如果不存在,请说明理由.(结果保留根号)

【考点】四边形综合题.
【答案】3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 3:0:1组卷:140引用:2难度:0.3
相似题
-
1.【了解概念】
定义提出:有一组邻边相等的凸四边形叫做“等邻边四边形”.
【理解运用】
(1)如图1,在3×3的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,线段AB、BC的端点均在格点上,在图1的方格纸中画出一个等邻边四边形ABCD,要求:点D在格点上;
(2)如图2,在等邻边四边形ABCD中,AB=AD=4,∠A=60°,∠ABC=90°,,求CD的长;BC=33
【拓展提升】
(3)如图3,在平面直角坐标系中,矩形OABC的顶点A、C分别在x、y轴正半轴上,已知OC=4,OA=6,D是OA的中点.在矩形OABC内或边上,是否存在点E,使四边形OCED为面积最大的“等邻边四边形”,若存在,请求出四边形OCED的最大面积及此时点E的坐标;若不存在,请说明理由.发布:2025/5/23 5:30:3组卷:951引用:14难度:0.3 -
2.(1)感知:如图①,四边形ABCD和CEFG均为正方形,BE与DG的数量关系为 ;
(2)拓展:如图②,四边形ABCD和CEFG均为菱形,且∠A=∠F,请判断BE与DG的数量关系,并说明理由;
(3)应用:如图③,四边形ABCD和CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,求菱形CEFG的面积.发布:2025/5/23 5:30:3组卷:229引用:1难度:0.3 -
3.如图,在正方形ABCD中,
,将正方形ABCD绕点C按顺时针方向旋转90°得到正方形CEFM.动点P从点A出发,沿AC方向运动,运动速度为1cm/s.过点P作AC的垂线,交AD于点Q,连接CQ,交PF于点H.设动点P的运动时间为t s(0<t<8).解答下列问题:AB=42cm
(1)当t为何值时,S△APQ:S△CDF=1:4?
(2)设△PFQ的面积为S cm2,求S与t之间的关系式;
(3)当运动时间为2 s时,求PH的长;
(4)若N是PF的中点,在运动的过程中,点N到∠DFE两边距离的和是否为定值?请说明理由.发布:2025/5/23 5:30:3组卷:264引用:1难度:0.1